Comandos comparativos para Troubleshooting, Reset e Refresh do BGP : Comware 5 x IOS Cisco

Segue uma lista para rápida comparação de comandos para troubleshooting, reset e refresh para o processo BGP comparando os comandos entre equipamentos 3Com,H3C e HP baseados no Comware 5 e Cisco IOS.

Troubleshooting

Comware                                           IOS

display ip routing-table                          show ip route
display ip routing-table x.x.x.x                  show ip route x.x.x.x
display ip routing-table x.x.x.x longer-match     show ip route x.x.x.x longer-prefixes
display ip routing-table protocol bgp             show ip route bgp
display bgp routing-table                         show ip bgp
display bgp routing-table x.x.x.x                 show ip bgp x.x.x.x
display bgp routing peer                          show ip bgp summary
display bgp routing regular-expression AS-number  show ip bgp regexp AS-number

Reset e Refresh

Comware                                           IOS

reset bgp x.x.x.x            (modo user-view)     clear ip bgp x.x.x.x
refresh bgp x.x.x.x import   (modo user-view)     clear ip bgp x.x.x.x in
                                                  clear ip bgp x.x.x.x soft in

refresh bgp x.x.x.x export                        clear ip bgp x.x.x.x out
                                                  clear ip bgp x.x.x.x soft out

Comware: Utilizando sub-interfaces nos Rotadores HP

A utilização de sub-interfaces em Roteadores permite a multiplexação/divisão de um único link físico em múltiplos links lógicos.

Como exemplo nos cenários abaixo, o Roteador poderá atuar tanto como Gateway para roteamento entre as VLANs X e Y no cenário A para casos em que o Roteador possua possua poucas portas disponíveis, por exemplo; como também em casos para rotear pacotes sem que as redes X e Y tenham acesso uma a outra com a utilização de VRFs , chamadas de VPN-Instance nos Roteadores HPN ( para o cenário B).

Para configurar uam sub-interface em um Roteador 8800, utilize o “.”(ponto) + o id da VLAN após o numero indicativo da porta em uma interface no modo routed.

[Roteador]interface Ten-GigabitEthernet 2/1/1.?

#

Segue um exemplo da configuração para o cenário A

interface Ten-GigabitEthernet 2/1/1.30
description VLAN_X
ip adress 192.168.20.1 255.255.255.0
quit
#
interface Ten-GigabitEthernet 2/1/1.31
description VLAN_Y
ip adress 192.168.30.1 255.255.255.0
quit
#

Em alguns modelos de Roteadores como a Serie 6600 será necessário configurar o VLAN ID, com a configuração do vlan-type dot1q vid [id da vlan] dentro da sub-interface, isto em razão do SO do Roteador não entender que é explicito o ID da VLAN no número da sub-interface. Roteadores Cisco funcionam da mesma forma.

interface Ten-GigabitEthernet 2/1/1.30
description VLAN_X
ip adress 192.168.20.1 255.255.255.0
vlan-type dot1q vid 30
quit
#
interface Ten-GigabitEthernet 2/1/1.31
description VLAN_Y
ip adress 192.168.30.1 255.255.255.0
vlan-type dot1q vid 31
quit
#

… então como as sub-interfaces estão diretamente conectadas, as rotas são adicionadas à tabela de roteamento, o equipamento fará  o roteamento de pacotes.

Já para o segundo cenário, a mesma configuração é válida, bastando apenas configurar a sub-interface com a configuração da vpn-instance antes de configurar o endereço IP.

#Criando a VRF para o cliente X
ip vpn-instance clientex
 route-distinguisher 65000:1
 vpn-target 65000:1 export-extcommunity
 vpn-target 65000:1 import-extcommunity
#
#Criando a VRF para o cliente Y
ip vpn-instance clientey
 route-distinguisher 65000:2
 vpn-target 65000:2 export-extcommunity
 vpn-target 65000:2 import-extcommunity
#
interface Ten-GigabitEthernet 2/1/1.30
description 
ip binding vpn-instance clientex
ip adress 192.168.20.1 255.255.255.0
quit
#
interface Ten-GigabitEthernet 2/1/1.31
description VLAN_Y
ip binding vpn-instance clientey
ip adress 192.168.30.1 255.255.255.0
quit
#
# as configurações do compartimento WAN de cada VRF foram omitidas
#

 obs: Uma rede não será roteada para outra a menos que estejam na mesma VRF.

Já para a configuração do Switch basta apenas configurar a interface como trunk permitindo as vlans correspondente. Se o Roteador for da Serie 6600 a configuração vlan-type dot1q vid … também será necessária (para o segundo cenário).

Um grande abraço

Comware 7 – Configuração de rota estática IPv6

Durante o recebimento de pacotes para comunicação entre máquinas IPv6, o Roteador efetua uma consulta na sua tabela de roteamento IPv6 para verificar se existe alguma rota para o destino. Se a rota existir o pacote será encaminhado, senão, o pacote será descartado.

A maior parte dos parâmetros de configuração de rotas estáticas em IPv6 são idênticos ao IPv4. Como por exemplo, rota estática padrão, sumarizada e flutuante.

Os parâmetros para inserir uma rota estática IPv6 em equipamentos baseados no Comware, são:

[MSR] ipv6 route [endereço-ipv6-de-destino] [tamanho-do-prefixo] [próximo-salto]

O next-hop (ou próximo salto) pode ser identificado por um endereço IPv6, interface de saída ou ambos.

É possível verificar a tabela de roteamento IPv6 com o comando display ipv6 routing-table.

A rota “ipv6 route-static ::0 0 [próximo-salto]” é uma “rota padrão” e corresponde a qualquer prefixo IPv6 (utilizado quando uma rota específica não é encontrada na tabela de roteamento).

Exemplo de Configuração

Endereço do next-hop como link-local

Caso haja a necessidade de configurar o endereço de next-hop como endereço IPv6 link-local, é necessário configurar a interface de saída, como no exemplo abaixo:

ipv6 route-static 2001:db8:222::2 64 GigabitEthernet0/0 fe80::88e5:7aff:fe7

Testes

Para validar as rotas configuradas resumimos alguns comandos abaixo:

ping ipv6 [endereço do host em IPv6]
! Testes de Ping

tracert ip [endereço do host em IPv6]
! Testes de tracerout

display ipv6 routing-table
! Verificar tabela de roteamento IPv6

display ipv6 interface [interface com endereço IPv6 no roteador]
! Verifique todos os endereços IPv6 da interface ( global, link-local, etc)

Perguntas e Respostas: VRF x VPN-instance

Pessoal, segue abaixo um pequeno resumo sobre a nomenclatura utilizada nas documentações Cisco x HP sobre o assunto VRF. Acredito que possa ajudar de forma rápida a entender alguns conceitos:

VRF: Virtual Routing and Forwarding
A utilização de VRFs (Virtual Routing and Forwarding) em Roteadores permite a criação de tabelas de roteamentos virtuais que trabalham de forma independente da tabela de roteamento “normal”, protegendo os processos de roteamento de cada cliente de forma individual. Utilizado em cenários MPLS L3VPN com MP-BGP.

VRF Lite
A mesma funcionalidade que a VRF para criação de tabelas de roteamento independentes, mas nomeado para cenários sem MPLS L3VPN. Chamado também de Multi-VRF.

VPN-Instance
Termo utilizado nas documentações HP para VRF no Comware.

MCE (Multi CE)
Termo utilizado nas documentações HP para VRF-Lite.

Dúvidas e colocações, deixe um comentário.

Configurando IRF em Roteadores HP MSR

Os novos Roteadores MSR da HP possuem suporte para a configuração em IRF. O IRF é uma tecnologia que permite transformarmos diversos Switches ou Roteadores físicos em um único equipamento lógico. Todos os equipamentos serão visualizados como uma única “caixa”, aumentando a disponibilidade da rede.

A recomendação é efetuar o IRF com equipamentos da mesma família e modelo, mas há dispositivos que suportam equipamento da mesma família, mas com diferentes modelos. É bom pesquisar caso a caso.

O cenário abaixo foi construído utilizando o simulador HCL utilizando 2 Roteadores em IRF conectando um Router-Aggregation com um Switch 5820.

Configurando o IRF

Segue abaixo o passo-a-passo da configuração:

1º altere o irf-member ID do segundo Roteador (por padrão o member ID é 1) e o priority de cada equipamento para eleição do Master (vence o maior valor).

R1
<ROUTER>system
[ROUTER]irf priority 31

R2
<ROUTER>system
[ROUTER]irf member 2
[ROUTER]irf priority 30

Configurando as IRF-port

R1
[ROUTER]irf-port 1
[ROUTER-irf-port1]port group interface GigabitEthernet 0/0
[ROUTER-irf-port1]quit

R2
[ROUTER]irf-port 2
[ROUTER-irf-port2]port group interface GigabitEthernet 0/0
[ROUTER-irf-port2]quit

Habilitando o IRF

R1
[ROUTER]chassis convert mode irf
The device will switch to IRF mode and reboot.
You are recommended to save the current running configuration and specify the configuration file for the next startup. Continue? [Y/N]:y
Do you want to convert the content of the next startup configuration file flash:/startup.cfg to make it available in IRF mode? [Y/N]:y
Now rebooting, please wait...

R2
[ROUTER]chassis convert mode irf
....

Comandos display

[ROUTER]display irf

MemberID   Role   Priority CPU-Mac       Description
*+1       Master 31       90eb-4082-0100 ---
2       Standby 30       94cc-d87d-0200 ---
--------------------------------------------------
* indicates the device is the master.
+ indicates the device through which the user logs in.
The Bridge MAC of the IRF is: 90eb-4082-0100
Auto upgrade               : yes
Mac persistent             : 6 min
Domain ID                   : 0
Auto merge                 : yes

 

[ROUTER]display irf configuration
MemberID NewID   IRF-Port1                    IRF-Port2
1       1       GigabitEthernet1/0/0         disable
2       2       disable                       GigabitEthernet2/0/0

 

Configurando o Router-Aggregation nos MSRs em IRF

[ROUTER]interface Route-Aggregation 1
[ROUTER-Route-Aggregation1]link-aggregation mode dynamic
[ROUTER-Route-Aggregation1]ipv6 address 2001:db8:1234::a 64
[ROUTER-Route-Aggregation1]disp this

#
interface Route-Aggregation1
link-aggregation mode dynamic
ipv6 address 2001:DB8:1234::A/64
#
return
[ROUTER-Route-Aggregation1]quit

[ROUTER]interface GigabitEthernet 1/0/1
[ROUTER-GigabitEthernet1/0/1]port link-aggregation group 1
[ROUTER-GigabitEthernet1/0/1]interface GigabitEthernet 2/0/1
[ROUTER-GigabitEthernet2/0/1]port link-aggregation group 1
[ROUTER-GigabitEthernet2/0/1]end

Configuração do Switch

#
interface Bridge-Aggregation1
link-aggregation mode dynamic
#
#
interface GigabitEthernet1/0/1
port link-mode bridge
combo enable fiber
port link-aggregation group 1
#
interface GigabitEthernet1/0/2
port link-mode bridge
combo enable fiber
port link-aggregation group 1
#
interface Vlan-interface1
ipv6 address 2001:DB8:1234::B/64
#
[Router]disp link-aggregation verbose
Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing
Port Status: S -- Selected, U -- Unselected, I – Individual
Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired

Aggregate Interface: Route-Aggregation1
Aggregation Mode: Dynamic
Loadsharing Type: Shar
System ID: 0x8000, 90eb-4082-0100

Local:
Port             Status Priority Oper-Key Flag
--------------------------------------------------------------------------------
GE1/0/1         S       32768   1        {ACDEF}
GE2/0/1         S       32768   1         {ACDEF}
Remote:
Actor           Partner Priority Oper-Key SystemID               Flag
--------------------------------------------------------------------------------
GE1/0/1         3       32768   1         0x8000, 94de-65c3-0300 {ACDEF}
GE2/0/1         2       32768   1         0x8000, 94de-65c3-0300 {ACDEF}

 

[Router]ping ipv6 2001:db8:1234::b
Ping6(56 data bytes) 2001:DB8:1234::A --> 2001:DB8:1234::B, press CTRL_C to break
56 bytes from 2001:DB8:1234::B, icmp_seq=0 hlim=64 time=2.000 ms
56 bytes from 2001:DB8:1234::B, icmp_seq=1 hlim=64 time=1.000 ms
56 bytes from 2001:DB8:1234::B, icmp_seq=2 hlim=64 time=0.000 ms
56 bytes from 2001:DB8:1234::B, icmp_seq=3 hlim=64 time=1.000 ms
56 bytes from 2001:DB8:1234::B, icmp_seq=4 hlim=64 time=1.000 ms

--- Ping6 statistics for 2001:db8:1234::b ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.000/1.000/2.000/0.632 ms
[Router]%Jan 26 13:40:07:783 2016 Router PING/6/PING_STATISTICS: Ping6 statistics for
2001:db8:1234::b: 5 packets transmitted, 5 packets received, 0.0% packet loss, round-trip
min/avg/max/std-dev = 0.000/1.000/2.000/0.632 ms.

Até logo

Comware7: Template para IPv6 Prefix-list

Um prefixo ‘bogon’ é uma rota que nunca deve aparecer na tabela de roteamento da Internet. Um pacote roteado pela Internet pública nunca deve ter um endereço de origem em um intervalo ‘bogon'(não incluindo VPNs ou outros tipos túneis). Estes são geralmente encontrados como  endereços de origem de ataques DDoS.

A equipe 6Bogon mantém recomendações atualizadas para Filtro de Pacotes e para Filtro de rotas IPv6 para xSP, descrevendo as recomendações para filtragem de pacotes e filtragem de rotas para uso em roteadores de borda que falam IPv6 em/com xSPs.

Roteadores utilizam prefix-list para filtro de rotas em processos de roteamento, como por exemplo, o protocolo BGP. Uma vez que a prefix-list é criada, ela é utilizada no processo para filtrar as rotas aprendidas ou ensinada a um roteador par.

Voltando aos ‘bogons’, há a seguinte sugestão de prefixos que devem ser permitidos em uma tabela de roteamento IPv6 para o Comware7:

ipv6 prefix-list global-routes deny   2001:0DB8:: 32 less-equal 128
ipv6 prefix-list global-routes permit 2001:0200:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0400:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0600:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0800:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0A00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0C00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:0E00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1200:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1400:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1600:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1800:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1A00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:1C00:: 22 le 64
ipv6 prefix-list global-routes permit 2001:2000:: 20 le 64
ipv6 prefix-list global-routes permit 2001:3000:: 21 le 64
ipv6 prefix-list global-routes permit 2001:3800:: 22 le 64
ipv6 prefix-list global-routes permit 2001:4000:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4200:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4400:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4600:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4800:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4A00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:4C00:: 23 le 64
ipv6 prefix-list global-routes permit 2001:5000:: 20 le 64
ipv6 prefix-list global-routes permit 2001:8000:: 19 le 64
ipv6 prefix-list global-routes permit 2001:A000:: 20 le 64
ipv6 prefix-list global-routes permit 2001:B000:: 20 le 64
ipv6 prefix-list global-routes permit 2002:0000:: 16 le 64
ipv6 prefix-list global-routes permit 2003:0000:: 18 le 64
ipv6 prefix-list global-routes permit 2400:0000:: 12 le 64
ipv6 prefix-list global-routes permit 2600:0000:: 12 le 64
ipv6 prefix-list global-routes permit 2610:0000:: 23 le 64
ipv6 prefix-list global-routes permit 2620:0000:: 23 le 64
ipv6 prefix-list global-routes permit 2800:0000:: 12 le 64
ipv6 prefix-list global-routes permit 2A00:0000:: 12 le 64
ipv6 prefix-list global-routes permit 2C00:0000:: 12 le 64

Referência

http://www.team-cymru.org/ipv6-router-reference.html
http://www.team-cymru.org/Reading-Room/Templates/IPv6Routers/xsp-recommendations.txt

Vídeo: Comware – Tabela de Roteamento

A tabela de roteamento possui registro dos destinos para encaminhamento dos pacotes. As rotas  podem ser aprendidas manualmente (rotas estáticas ou redes diretamente conectadas) e dinamicamente (aprendidos via protocolo de roteamento dinâmico como OSPF, BGP,etc).

Nesse vídeo faremos uma breve descrição do funcionamento, aprendizado e escolha das rotas por um Roteador.

Comware 7 – BGP Community

O atributo do BGP community é utilizado como para marcação para um determinado grupo de rotas. Provedores de Serviço utilizam essas marcações para aplicar políticas de roteamento específicas em suas redes, como por exemplo, alterando o Local Preference, MED, etc. O atributo simplifica a configuração das políticas de roteamento, gerenciamento e manutenção.

Os ISP’s podem também estabelecem um mapeamento de community com o cliente ou com outro provedor para que sejam aplicadas regras de roteamento.

O recebimento e envio de communities BGP em Roteadores HP necessitam da configuração explicita do comando advertise-community. No exemplo abaixo, segue a configuração de um peer BGP em um roteador com o Comware 7:

bgp 65500
 group AS65500 internal
 peer AS65500 connect-interface LoopBack1
 peer 192.168.2.2 group AS65500
 #
 address-family ipv4 unicast
  peer AS65500 enable
  peer AS65500 advertise-community
#

O atributo community é opcional e transitivo (optional transitive) de tamanho variável. O atributo consiste em um conjunto de 4 octetos ou um número de 32 bits que específica uma community. A representação de uma community BGP é geralmente feita no formato AA:NN onde o AA é o Autonomous System (AS) e o NN é o número da community.

Algumas communities tem significados pré-definidos como:

  • NO_EXPORT (0xFFFFFF01)
  • NO_ADVERTISE (0xFFFFFF02)
  • NO_EXPORT_SUBCONFED (0xFFFFFF03)

-A community  NO_EXPORT  diz ao roteador que ele deve  propagar os prefixos somente dentro de peers iBGP e que não deve propagar esses prefixos para roteadores pares eBGP.

-A community NO_EXPORT_SUBCONFED possui as mesmas funcionalidades do NO_EXPORT dentro de cenários com confederation.

-A community NO_ADVERTISE  diz ao roteador que ele não deve anunciar o prefixo para nenhum peer BGP.

Abaixo, deixamos um exemplo de configuração utilizando a community NO_EXPORT e o output:

R1	
#
 ip prefix-list COMM_iBGP index 10 permit 192.168.11.0 24
#
route-policy SET_COMM permit node 5
 if-match ip address prefix-list COMM_iBGP
 apply community no-export
#
route-policy SET_COMM permit node 65535
#
#
bgp 65500
 group AS65500 internal
 peer AS65500 connect-interface LoopBack1
 peer 192.168.2.2 group AS65500
 #
 address-family ipv4 unicast
  network 192.168.11.0 255.255.255.0
  network 192.168.111.0 255.255.255.0
  peer AS65500 enable
  peer AS65500 route-policy SET_COMM export
  peer AS65500 advertise-community
#

Verificando no Roteador R2 a marcação enviada por R1 para o prefixo 192.168.11.0/24 :

[R2]display bgp routing-table ipv4 192.168.11.0
 BGP local router ID: 192.168.22.2
 Local AS number: 65500
 Paths:   1 available, 1 best
 BGP routing table information of 192.168.11.0/24:
 From            : 192.168.1.1 (192.168.11.1)
 Rely nexthop    : 192.168.12.1
 Original nexthop: 192.168.1.1
 OutLabel        : NULL
 Community       : No-Export
 AS-path         : (null)
 Origin          : igp
 Attribute value : MED 0, localpref 100, pref-val 0
 State           : valid, internal, best
 IP precedence   : N/A
 QoS local ID    : N/A
 Traffic index   : N/A

Configurando os valores manualmente…

Um prefixo pode também participar de mais de uma community e com isso um roteador pode tomar uma ação em relação ao prefixo baseado em uma (algumas) ou todas as communities associadas ao prefixo. O roteador tem a opção de manter, adicionar ou modificar o atributo antes de passar para os outros roteadores.

#
 ip prefix-list COMM_eBGP index 10 permit 192.168.111.0 24
 ip prefix-list COMM_iBGP index 10 permit 192.168.11.0 24
#
route-policy SET_COMM permit node 5
 if-match ip address prefix-list COMM_iBGP
 apply community no-export
#
route-policy SET_COMM permit node 10
 if-match ip address prefix-list COMM_eBGP
 apply community 65500:90
#
route-policy SET_COMM permit node 65535
#
bgp 65500
 group AS65500 internal
 peer AS65500 connect-interface LoopBack1
 peer 192.168.2.2 group AS65500
 #
 address-family ipv4 unicast
  network 192.168.11.0 255.255.255.0
  network 192.168.111.0 255.255.255.0
  peer AS65500 enable
  peer AS65500 route-policy SET_COMM export
  peer AS65500 advertise-community
#

Verificando a marcação enviada por R1 do prefixo 192.168.111.0/24:

[R4] display bgp routing-table ipv4 192.168.111.0
 BGP local router ID: 192.168.44.4
 Local AS number: 65507
 Paths:   1 available, 1 best
 BGP routing table information of 192.168.111.0/24:
 From            : 192.168.24.2 (192.168.22.2)
 Rely nexthop    : 192.168.24.2
 Original nexthop: 192.168.24.2
 OutLabel        : NULL
 Community       : <65500:90>
 AS-path         : 65500
 Origin          : igp
 Attribute value : pref-val 0
 State           : valid, external, best
 IP precedence   : N/A
 QoS local ID    : N/A
 Traffic index   : N/A

Em resumo, as operadoras utilizam communities BGP para manipulação de grande quantidade de prefixos para fins de políticas de roteamento, blackhole, etc. Grandes corporações também as utilizam para identificação de rotas de empresas filiais, rotas aprendidas em fusões com outras empresas,  políticas de roteamento, redes de serviço e mais.

Referências

http://babarata.blogspot.com.br/2010/05/bgp-atributo-community.html

http://www.noction.com/blog/understanding_bgp_communities

Vídeo: Comware VRRP com Track de Interface

O VRRP (Virtual Router Redundancy Protocol) permite a utilização de um endereço IP virtual em diferentes Switches/Roteadores. O funcionamento do VRRP é bem simples, dois ou mais dispositivos são configurados com o protocolo para troca de mensagens e então, o processo elege um equipamento MASTER e um ou mais como BACKUP.

Em caso de falha do Roteador VRRP Master o Roteador VRRP Backup assumirá rapidamente a função e o processo ocorrerá transparente para os usuários da rede.

Há também cenários que o roteador Master do VRRP continua ativo, mas não consegue encaminhar os pacotes devido a interface saída (como para a Internet por exemplo) cair. Podemos então fazer o track para o processo VRRP monitorar algum objeto, que pode ser o estado da interface( UP ou down), pingar determinado site, teste de conexão telnet e etc; e dessa forma reduzir a prioridade VRRP baseando-se em uma condição.