Comware: Rapid Spanning-Tree (802.1w)

O protocolo Rapid Spanning-Tree é definido no padrão IEEE 802.1w para melhora no tempo de convergência do Spanning-Tree (802.1d) ,definindo regras para que os links alterem rapidamente ao estado de encaminhamento (forwarding), gerando mensagens BPDUs em vez de apenas retransmitir os BPDUs do Root, oferecendo uma significativa melhora no tempo de convergência da rede.

Uma das principais melhorias efetuadas no protocolo reduziu o tempo de convergência em caso de falha de 3 Hellos BPDU’s (por default 2 segundos cada Hello) ao invés de 10 Hellos BPDU’s na versão anterior do Protocolo.

O RSTP elege o Switch Root da mesma maneira que o 802.1d e o tempo de transição para o estado das portas foi reduzido com 3 operações básicas: DiscardingLearning e Forwarding

A rápida transição para o forwarding é permitida sem a necessidade de esperar o tempo da configuração, baseando-se na classificação dos equipamentos conectados nas portas do Switch.

  • Edge : porta conectada a computadores, telefones IP, impressoras etc.
  • Point-to-Point: porta conectada em outro Switch
  • Shared: Porta conectada a um Hub

Edge

As portas do Switch conectadas a computadores e servidores precisam de configuração manual para rápida transição do modo de discarding para o forwarding. Durante qualquer alteração da topologia do Spanning-tree a porta Edge não participará do Spanning-Tree, mas gerará BPDU’s por segurança.

[Sw] interface gigabitethernet 1/0/1
[Sw-GigabitEthernet1/0/1] stp edged-port enable

Obs: Se uma porta configurada como edge receber um BPDU, automaticamente voltará ao estado uma porta normal do STP 

Point-to-Point

Por default as portas RSTP conectadas e negociadas como Full Duplex entre Switches consideram-se point-to-point. A rápida transição é possível após a porta encaminhar um BPDU como Proposal e receber a confirmação do BPDU com um Agreement , esse processo é chamado de handshake ( na tradução literal, aperto de mãos).

e houverem Links redundantes na topologia a porta com caminho alternativo para o Switch Root ficará no estado de discarding e será considerada como uma Alternate Port.

Outra melhora na versão do protocolo ocorre durante mudanças na topologia, como por exemplo, quebra do caminho principal. Os Switches não terão que esperar o aviso do Switch Root para efetuarem a convergência da topologia (basta receber um TCN do Switch vizinho) e assim a porta com caminho alternativo poderá mudar imediatamente para o estado de encaminhamento.

Em testes práticos a convergência na quebra de um link chega a perder um PING.

Para habilitar o RSTP nos Switches H3C/3Com utilize o comando stp mode rstp

Rapidinhas

• Todo Switch vem de fabrica com o valor da Bridge priority como 32768, a eleição do Switch Root pode ser manipulada alterando o valor do bridge priority menor que o Valor padrão. Em caso de empate é utilizado o endereço MAC do equipamento.

• O estado de “bloqueio” das portas utilizado no Spanning-Tree (802.1d) é renomeado para estado de “descarte”(discarding). A função de uma porta de descarte é a de uma porta alternativa. A porta de descarte pode tornar-se uma porta designada se a porta do segmento falhar.

• As regras de Portas Root e Designadas são idênticas em ambas versões do STP

• Uma porta Root possui o melhor caminho para o Switch Root que é geralmente o caminho de menor custo. ( O Switch Root não possui porta Root)

• Uma porta Designada é porta que encaminha os BPDUs dentro de um segmento. ( Existente em Switches Root e não-Root)

• Alternate Port – porta bloqueada por ser um caminho alternativo para o Switch Root. A porta alternativa irá tornar-se root se a porta root falhar.

• Backup Port – porta bloqueada que recebe um BPDU de uma porta designada do mesmo segmento. (como por exemplo um cabo conectado do próprio Switch ou 2 conexões para o mesmo HUB)

• Utilize sempre os comandos display stp e display stp briefpara visualização dos estados das portas do STP.

• O protocolo 802.1w possui compatibilidade com o 802.1d

Abraços a todos!

Comware: OSPF – Comando Silent-Interface ( Passive Interface)

Durante as configurações do processo OSPF para Switches, Servidores ou Roteadores, algumas redes precisam ser declaradas no OSPF, mas isso não significa que elas (precisarão) formar adjacência com outros Roteadores – ao inserirmos uma rede com o comando network o equipamento começará a trocar mensagens OSPF por aquela interface.

O fato da interface gerar mensagens pelo protocolo OSPF a deixa vunerável ao aprendizado de mensagens de outros equipamentos que podem por consequência inserir redes por engano ou de forma maliciosa  (perdendo assim o controle sobre o Roteamento da rede).

Nesse caso poderemos deixar as interfaces Físicas e VLANs em modo silencioso, sem gerar mensagens do protocolo para a LAN.

O comando silent-interface  (em Switches e Roteadores 3Com/H3C/HP ) seguido do numero da interface VLAN ou Interface física, permitirá ao Switch/Roteador não gerar mensagens LSA.

ospf 100
silent-interface Vlan-interface1
! Configurando a interface VLAN 1 em modo silent
area 0.0.0.0
network 192.168.1.2 0.0.0.0
network 172.31.0.1 0.0.0.0

! As melhores práticas sugerem configurarmos todas as interfaces
! como silent ( passive) e habilitarmos somente as VLANs/Interfaces
! de adjacência com o comando undo silent-interface + Interface

silent-interface all
! Configurando todas as Interfaces VLAN como silent
undo silent-interface Vlan-interface 2
! Removendo a interterface VLAN 2 do silent

Dúvidas? Deixe um comentário!

Abraços a todos!

Resumo sobre ACL para Switches e Roteadores baseados no Comware

As ACL (Access Control List) são utilizadas para classificar tráfego para os mais diversos fins, como por exemplo, políticas de filtro de pacotes, QoS e PBR.

Uma ACL pode classificar um tráfego baseando-se no fluxo de dados que entram ou saem de uma interface (porta física, interface VLAN, VLAN, etc).

Na maioria dos casos uma ACL é utilizada para determinar se um pacote será permitido ou descartado em uma porta com as ações PERMIT ou DENY.

Essas ações são seguidas das definições DO QUE se deve permitir (PERMIT) ou negar (DENY). Estas, basicamente, são as principais opções:

ANY (tudo)
[IP do host/rede]
[subrede no formato wildcard]
[protocolo]

Imaginando de maneira prática, os Roteadores e Switches também podem utilizar como referência para classificação de tráfego as informações de cabeçalho de camada 2 (como endereço MAC), camada 3 (campos de cabeçalho IP) e camada 4 ( portas TCP e UDP).

Para uma ACL é possível adicionar diversas regras.  A leitura das regras pelo equipamento é efetuada linha por linha, de cima para baixo; e após a condição ser encontrada (match) o restante das regras não serão mais verificadas. A ordem para satisfazer uma condição, é lida na ordem em que as regras são configuradas.

O blog do CCNA faz o seguinte comentário para a utilização de uma ACL para filtro de pacotes (lembrando que uma ACL pode incluir diversas regras):

A regra básica diz que somente UMA ACL pode ser aplicada em uma mesma interface e direção, em um determinado router (ou switch). Ou seja, em uma mesma interface você até pode ter mais de uma ACL, desde que em sentidos opostos. Os sentidos possíveis são ilustrados no diagrama abaixo.

(IN) entrante —–> ROUTER ——> sainte (OUT)

Tipos de ACL

Os equipamentos baseados no Comware permitem três tipos de ACL:

  • Camada 2: Especificam regras baseadas em endereços MAC de origem, destino, VLAN e tipos de protocolo Ethernet.
  • Camada 3(básica): Especificam regras baseadas em endereços IP e rede de origem.
  • Camada 3 (Avançada): Especificam regras baseadas em protocolos de camada 3, redes de origem e destino; e portas de origem e destino.

Definindo a ACL

A definição do template para a configuração das Listas de Acesso é baseado pelos números,que a identificam:

  • ACL Básica: número 2000 a 2999
  • ACL Avançada: número de 3000 a 3999
  • ACL de camada 2: número de 4000 a 4999

ACL Básica

Baseia-se no endereço de rede de origem para filtrar ou permitir o tráfego.

Imaginando que você deseja filtrar quais máquinas podem efetuar efetuar Read and Write via SNMP em um Switch…

acl number 2100
! Criando a ACL 2100
rule permit source 172.31.1.100 0.0.0.0
! Criando a primeira regra na ACL 2000 permitindo a rede 172.31.1.100
! com 32 bits (máscara de host para somente uma máquina gerenciar o Switch via SNMP)
quit

snmp-agent community write comutadores acl 2100
! Vinculando a ACL 2100 na communty SNMP RW “comutadores”

A regra acima irá permitir o acesso SNMP  somente ao host  172.31.1.100, o restante da rede terá o acesso negado para coleta SNMP nesse equipamento.

Obs: Apesar do exemplo acima ser bem simples, uma ACL básica  também pode ser configurada para filtrar pacotes que entram ou saem do Roteador com a política baseada na rede de origem.

ACL Avançada

A diferença entre uma ACL básica e avançada é a forma de relacionamento com as informações no cabeçalho IP. A ACL avançada utiliza os campos de endereço IP de origem e destino, porta e número de protocolo diferenciando pacotes como TCP e UDP.

Alguns parâmetros especiais poderão ser utilizados na construção de uma ACL avançada:

  • Endereço IP de origem
  • Endereço IP de destino
  • Porta de origem
  • Porta de destino
  • Tipo de pacote ICMP
  • Parâmetro SYN do TCP
  • Valor IP Precedence
  • Valor DSCP
  • Valor TOS
  • Fragmentos

Abaixo segue o exemplo de uma ACL avançada criada e aplicada em uma interface do Roteador  HP 6600 para filtro de pacotes na entrada da interface Giga3/2/1

firewall enable slot 3
 !  Habilitando o filtro de pacotes no slot3 do roteador
 firewall default deny slot 3
! Habilitando uma regra de deny implícito após a configuração manual da última regra da ACL 

acl number 3030 name INTERNET-INBOUND
! Criando a ACL 3030 e atribuíndo o nome de "INTERNET-INBOUND"
 rule 10 permit icmp destination 200.200.200.0 0.0.0.255
! permindo os pacotes com o ip dentro do range 200.200.200.0/24 no cabeçalho de destino com wildcard
 rule  deny ip source 10.0.0.0 0.255.255.255
 rule  deny ip source 172.16.0.0 0.15.255.255
 rule  deny ip source 192.168.0.0 0.0.255.255
 rule  deny ip source 127.0.0.0 0.255.255.255
! negando qualquer pacote com ip de origem dentro do range da RFC 1918 
 rule 60 deny ip source 0.0.0.0 0.255.255.255
! negando qualquer pacote com ip de origem como 0.0.0.0
 rule 9999 permit ip
! permitindo qualquer endereço IP de origem e destino
 quit
 #
acl number 3040 name INTERNET-OUTBOUND
 rule  deny ip source 10.0.0.0 0.255.255.255
 rule  deny ip source 172.16.0.0 0.15.255.255
 rule deny ip source 192.168.0.0 0.0.255.255
 rule deny ip destination 224.0.0.0 15.255.255.255
 rule deny ip source 224.0.0.0 15.255.255.255
#
 interface GigabitEthernet3/2/1
 port link-mode route
 firewall packet-filter name INTERNET-INBOUND inbound
 firewall packet-filter name INTERNET-OUTBOUND outbound
! Aplicando a ACL para filtro na entrada e saída de pacotes
 ip address 123.123.123.218 255.255.255.252
 #

Segue um segundo exemplo de ACL avançada mas dessa vez em Switches do modelo 4800

acl number 3000
! Criando a ACL 3000
rule permit ip source 172.31.1.0 0.0.0.255 destination 192.168.1.0 0.0.0.255
! Criando a primeira regra na ACL 3000 permitindo a rede 172.31.1.0 com 24 bits (máscara
/24) efetuar comunicação IP com a rede 192.168.1.0/24 
rule deny ip source any
! Criando a segunda regra na ACL 3000 negando qualquer rede de origem
quit
#
interface vlan 2
ip address 192.168
packet-filter 3000 inbound
!Aplicando a ACL 2000 para filtro na interface VLAN.

Obs: Para aplicarmos uma ACL em  Portas físicas ou interface VLAN de um Switch é utilizado o comando packet-filter, já para roteadores, comando poderá ser incrementando com a sintaxe “firewall packet-filter….”

A regra acima irá permitir a comunicação IP, da rede 172.31.1.0/24 para a rede 192.168.1.0/24, o restante do tráfego terá o acesso negado.

Se precisarmos utilizar outros parâmetros para match da ACL podermos utilizar o caracter ? após o permit ou deny. Parâmetros como TCP, UDP, ICMP e etc poderão também ser utilizados

O exemplo abaixo exemplifica a utilização de parâmetros de portas TCP para criarmos a regra, como por exemplo permitir o acesso somente a serviços que realmente serão utilizados.

O restante do tráfego será negado, provendo maior segurança e escalabilidade pela utlilização de diversas VLANs.

[4800-acl-adv-3020] rule permit tcp source 172.31.1.0 0.0.0.255 destination 192.168.1.0 0.0.0.255 destination-port eq 80

ACL de camada 2

As ACL que utilizam parâmetros da camada de enlace do modelo de referencia OSI, poderão ser utilizadas para filtrar baseando-se em campos como ID da VLAN, mascara de endereços MAC (os primeiros bits são reservados para endereço dos fabricantes) , tipos de Protocolos,etc.

acl number 4999
 rule 0 permit type 8868 ffff
 rule 1 permit source 00e0-bb00-0000 ffff-ff00-0000
 rule 2 permit source 0003-6b00-0000 ffff-ff00-0000
 rule 3 permit source 00e0-7500-0000 ffff-ff00-0000
 rule 4 permit source 00d0-1e00-0000 ffff-ff00-0000
 rule 5 permit source 0001-e300-0000 ffff-ff00-0000
 rule 6 permit source 000f-e200-0000 ffff-ff00-0000
 rule 7 permit source 0060-b900-0000 ffff-ff00-0000
 rule 8 deny dest 0000-0000-0000 ffff-ffff-ffff

Obs: a configuração e o tipo de ACL disponivel em cada equipamento pode sofrer pequenas variações ou limitações na configuração. Sempre faça um teste antes de aplicar  a ACL em  um ambiente de produção.

Até logo.

Referência               

http://blog.ccna.com.br/2007/10/21/tutorial-basico-acls-para-o-exame-ccna/

http://blog.ccna.com.br/2012/11/21/wildcards-x-mascaras-de-rede/

Configurando Link-Aggregation/Etherchannel entre Cisco IOS e HP Comware

A agregação de diversas interfaces Ethernet (portas físicas) para a utilização de uma única porta lógica com o intuito de prover redundância e aumento de banda é uma atividade muito comum em redes de médio e grande porte .

Infelizmente o nome atribuído pelos fabricantes não segue um padrão, mas por outro lado todos possuem as mesmas funções citadas anteriormente:EtherchannelPort-channelLink-AggregationBridge-AggregationTrunk  [ nome dado antigamente para agregação de portas. (Não confundam com a utilização de interface Trunk atribuída pelos Switches Cisco e 3Com. Os Switches Procurve ainda utilizam essa terminologia) ]  e etc.

Existem algumas formas de estabelecer a agregação de portas, como por exemplo:

– Manual : sem a certificação do meio por protocolos auxiliares
– PAgP : Protocolo disponível em equipamentos Cisco
 LACP : Protocolo padrão IEEE,  disponível quase todos Switches gerenciáveis.

Modos de formação de um Etherchannel em Switches Cisco

Cisco(config-if)# channel-group 1 mode ?
  active Enable LACP unconditionally
  auto       Enable PAgP only if a PAgP device is detected
  desirable  Enable PAgP unconditionally
  on         Enable Etherchannel only
  passive    Enable LACP only if a LACP device is detected

No Script abaixo mostraremos a configuraçaõ de Link Aggregation/Etherchannel entre um Switch Cisco IOS e um Switch HP baseado no Comware:

Switch Comware

#
interface Bridge-aggregation 1
link-aggregation mode dynamic
! Estabelecendo a conexão do Link-Aggregation utilizando o protocolo LACP
#
interface gigabitEthernet 1/0/1
port link-aggregation group 1
! Atribuindo a porta para negociar a agregação via protocolo LACP
#
interface gigabitEthernet 1/0/2
port link-aggregation group 1
! Atribuindo a porta para negociar a agregação via protocolo LACP

Switch Cisco IOS

!
interface port-channel 1
!
interface gigabitEthernet 1/10
channel-group 1 mode active
! Estabelecendo a conexão do Etherchannel utilizando o protocolo LACP
!
interface gigabitEthernet 1/11
channel-group 1 mode active
! Estabelecendo a conexão do Etherchannel utilizando o protocolo LACP
!

Comandos Show e Display

Switch Comware

[HPN]display link aggregation verbose
Aggregation Interface: Bridge-Aggregation1
Aggregation Mode: Dynamic
Loadsharing Type: Shar
System ID: 0x8000, 3822-d6a2-5c00

Local:
  Port             Status  Priority Oper-Key  Flag
----------------------------------------------------
GE1/0/1       S       32768    8         {ACDEF}
GE1/0/2       S       32768    8         {ACDEF}

Remote:
Actor Partner Priority Oper-Key SystemID Flag
------------------------------------------------------------
GE1/0/1 516 32768 45 0x8000, 4055-39d4-8e13 {ACDEF}
GE1/0/2 517 32768 45 0x8000, 4055-39d4-8e13 {ACDEF}

Switch Cisco IOS

Cisco#show etherchannel summary
Flags:  D - down        P - bundled in port-channel
        I - stand-alone s – suspended
        H - Hot-standby (LACP only)
        R - Layer3      S - Layer2
        U - in use      f - failed to allocate aggregator
        M - not in use, minimum links not met
        u - unsuitable for bundling
        w - waiting to be aggregated
        d - default port
Number of channel-groups in use: 2
Number of aggregators:           2
Group  Port-channel  Protocol    Ports
------+-------------+-----------+--------------------------
1     Po1(SU)        LACP      Gi1/10(P)  Gi1/11(P)

Não esqueça!!!

Sempre quando for necessario a alteração de VLANs das portas do Link Aggregation/Etherchannel faça a alteração somente na interface virtual ( port channel/ bridge-aggregation), que a configuração será replicada para as interfaces físicas.
Mantenha a consistência de VLANs nas 2 pontas do Link Aggregation/Etherchannel.

Use velocidades de portas idênticas como: interfaces 1Gb com interfaces 1G e interfaces 10Gb com interfaces 10Gb e assim por diante…

Distância administrativa em equipamentos Comware

A tabela de roteamento dos Switches L3 e Roteadores, insere os destinos aprendidos manualmente (rotas estáticas ou redes diretamente conectadas) ou dinamicamente (aprendidos via protocolo de roteamento dinâmico).

 Para os casos de uma destino ser aprendido de diferentes formas, como por exemplo, o prefixo 192.168.1.0/24 ser aprendido via RIP e OSPF, o Roteador dará preferência para a rota com  Distância Administrativa de menor valor, no caso, o destino aprendido via OSPF terá preferência pelo valor 10 em detrimento do protocolo RIP com o valor 100 (nesse exemplo a rota eo gateway da rede que será inserido na tabela de roteamento será o aprendido via OSPF).Perceba que as rotas diretamente conectadas possuem a prioridade 0 (zero) e serão roteadas internamente pelo dispositivo.

 A Distância Administrativa possui apenas função local e não é compartilhada pelo protocolo de roteamento. Um detalhe importante a ser percebido é a diferença com os valores atribuídos para a distancia administrativa para Roteadores Cisco. Em todo caso para evitar problemas em cenários com mais de 1 protocolo de roteamento, altere a métrica  em um dos dois dispositivos.

Distância Adm. HP Serie ADistância Adm. Cisco
Directly Connected00
OSPF10110
IS-IS15115
STATIC601
RIP100120
OSPF ASE150110
OSPF NSSA150110
IBGP255200
EBGP25520
Unknown256255

Abraços a todos

Comware: DHCP Snooping

A funcionalidade DHCP Snooping permite a proteção da rede contra Servidores DHCP não autorizados e sua configuração é bastante simples. O comando dhcp-snooping configurado globalmente, faz o Switch filtrar todas as mensagens DHCP Offer e DHCP Ack encaminhadas pelo falso Servidor DHCP. A configuração restringe todas as portas do Switch como untrusted (não confiável).

Para o funcionamento do ‘Servidor DHCP válido’ deveremos configurar a porta do Servidor DHCP como trusted (confiável), incluíndo as portas de uplink.

Agendando o Reboot no Comware

O Kleber Coelho, enviou a dica abaixo na qual ele precisou mexer em uma configuração sensível no Switch HP 7510 que poderia gerar a perda da gerencia do equipamento.

Inicialmente ele salvou a configuração atual do Switch. Após isso, agendou o reboot para 10 minutos (em caso de perda da gerencia, o Switch reiniciaria e voltaria a ultima configuração salva), aplicou a configuração e após o sucesso dos comandos aplicados, ele cancelou o reboot.

A configuração do schedule reboot deverá ser feita no modo “user-view”

Segue o email do Kleber:

Diego, boa tarde, tudo bem?

Recentemente precisei bloquear da divulgação do OSPF um IP de gerência local em um HP-A7510.
Se for útil para você colocar no blog, sinta-se à vontade!

# salvando a configuração atual
save force
# gatilho de reboot para garantir a recuperação, 
# caso dê algo errado e perca o acesso 
schedule reboot delay 10
# criar ACL com redes bloqueadas
system
acl number 2500 name Remove_BOGON_OSPF
# rule deny source <IP> <Wildcard>
rule deny source 192.168.255.0 0.0.0.255
rule permit
# aplicar ACL na instancia OSPF
ospf 1
filter-policy 2500 export
# Se der algo errado e perder acesso, 
#     basta esperar  o equipamento reiniciar em 10 minutos.
# Se tudo der certo, salve e remova o agendamento de reboot.
save force
quit
quit
undo schedule reboot

Agradeço ao Kleber pela dica enviada.

Comandos comparativos para Troubleshooting, Reset e Refresh do BGP : Comware 5 x IOS Cisco

Segue uma lista para rápida comparação de comandos para troubleshooting, reset e refresh para o processo BGP comparando os comandos entre equipamentos 3Com,H3C e HP baseados no Comware 5 e Cisco IOS.

Troubleshooting

Comware                                           IOS

display ip routing-table                          show ip route
display ip routing-table x.x.x.x                  show ip route x.x.x.x
display ip routing-table x.x.x.x longer-match     show ip route x.x.x.x longer-prefixes
display ip routing-table protocol bgp             show ip route bgp
display bgp routing-table                         show ip bgp
display bgp routing-table x.x.x.x                 show ip bgp x.x.x.x
display bgp routing peer                          show ip bgp summary
display bgp routing regular-expression AS-number  show ip bgp regexp AS-number

Reset e Refresh

Comware                                           IOS

reset bgp x.x.x.x            (modo user-view)     clear ip bgp x.x.x.x
refresh bgp x.x.x.x import   (modo user-view)     clear ip bgp x.x.x.x in
                                                  clear ip bgp x.x.x.x soft in

refresh bgp x.x.x.x export                        clear ip bgp x.x.x.x out
                                                  clear ip bgp x.x.x.x soft out

Comware 5: Configuração básica do BGP

O Protocolo BGP é considerado o mais robusto Protocolo de Roteamento para redes IP. Sua complexidade permite a conexão de múltiplos Sistemas Autônomos, chamados de AS (Autonomous systems), permitindo o Roteamento Dinâmico na Internet.

A Internet consiste em redes Comerciais conectadas por Provedores (ISP’s) como Telefônica,Embratel, Oi, CTBC e etc. Cada rede comercial ou Provedor deve ser identificado pelo Número do seu Sistema Autônomo (ASN) sobre controle do IANA .

A função primária de um sistema BGP é trocar informação de acesso à rede, inclusive Informações sobre a lista das trajetórias dos ASs, com outros sistemas BGP. Esta informação pode ser usada para construir uma rede de conectividade dos ASes livre de loops de roteamento.

O BGP é considerado um Protocolo de Vetor de Distância avançado utilizando-se de vetores para contagem de saltos para cada destino. A contagem de saltos para o BGP é baseada em AS.

Os Roteadores BGP são configurados com informações dos vizinhos para formação de uma conexão TCP confiável para transporte das informações de Roteamento e Sistemas Autônomos. Após estabelecimento da sessão, a conexão TCP continua aberta até a percepção de falha no link ou encerramento explicito da sessão via configuração. O estabelecimento de uma sessão indica a formação de um peer BGP.

O controle para administração de prefixos possibilita a utilização do BGP em diversos ambientes Corporativos fora da Internet. Há diversos cenários que necessitam de flexibilidade e controle que protocolos de Roteamento como OSPF e EIGRP não permitem.

O range de numero de AS 64512 a 65535 permitem a criação de AS’s para uso privado.

Abaixo exemplificaremos a configuração no Comware 5 entre Roteadores de diferentes AS.

Configuração
Switch Comware 5 pertencente ao AS 64512 (Matriz)
#
interface Vlan-interface2
ip address 172.31.1.1 255.255.255.0
#
interface Vlan-interface41
ip address 192.0.2.41 255.255.255.252
#
bgp 64512
!Ativando o BGP no Switch. O número do AS é 64512
network 172.31.1.0 255.255.255.0
! Anunciando o prefixo no BGP
undo synchronization
! Desabilitando a Sincronização (habilitado por default)
peer 192.0.2.42 as-number 64515
! identificando um vizinho BGP
peer 192.0.2.42 password simple senha
! Configurando a autenticação com a senha “senha”
#

Switch Comware 5 pertencente ao AS 64515 (Filial)
#
interface Vlan-interface42
ip address 192.0.2.42 255.255.255.252
#
interface Vlan-interface180
ip address 180.0.0.1 255.255.255.0
#
bgp 64512
network 180.0.0.0 255.255.255.0
undo synchronization
peer 192.0.2.42 as-number 64515
peer 192.0.2.42 password simple senha
#

Display

[Matriz]display ip routing-table
Routing Tables: Public
Destinations : 7 Routes : 7

Destination/Mask Proto Pre Cost NextHop Interface

127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0
127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0
172.31.1.0/24 Direct 0 0 172.31.1.1 Vlan2
172.31.1.1/32 Direct 0 0 127.0.0.1 InLoop0
180.0.0.0/24 BGP 255 0 192.0.2.42 Vlan41
192.0.2.40/30 Direct 0 0 192.0.2.41 Vlan41
192.0.2.41/32 Direct 0 0 127.0.0.1 InLoop0

[Matriz] disp bgp routing-table
Total Number of Routes: 3
BGP Local router ID is 192.168.0.41
Status codes: * - valid, > - best, d - damped,
h - history, i - internal, s - suppressed, S - Stale
Origin : i - IGP, e - EGP, ? - incomplete
Network NextHop MED LocPrf PrefVal Path/Ogn

*> 172.31.1.0/24 0.0.0.0 0 0 i
*> 180.0.0.0/24 192.0.2.42 0 0 64515i

[Matriz]display bgp peer
BGP local router ID : 192.168.0.42
Local AS number : 64512
Total number of peers : 1 Peers in established state : 1

Peer AS MsgRcvd MsgSent OutQ PrefRcv Up/Down State
192.0.2.42 64515 9 10 0 1 00:07:02 Established

Até logo!