Aruba AOS-CX Switch Simulator – EVE-NG – Deploment Guide

EVE-NG (Emulated Virtual Environment – Next Generation) é uma plataforma de virtualização usada para emular redes, dispositivos e sistemas operacionais, permitindo a criação de laboratórios complexos para testes e estudos em TI. Suportando uma variedade de imagens de dispositivos de rede (como Aruba, Cisco, Juniper, Fortinet e outros), o EVE-NG é amplamente utilizado por profissionais e estudantes para simular topologias de rede realistas sem a necessidade de hardware físico. Com uma interface web intuitiva, integração com ferramentas como Wireshark e capacidade de executar máquinas virtuais, o EVE-NG se destaca como uma solução eficiente para treinamento, certificações e desenvolvimento de projetos de redes.

A ferramenta esta disponível em versões Community (gratuita) e Professional (paga), a ferramenta é compatível com diversos hipervisores como VMware e KVM.

A Aruba desenvolveu um guia para implementação e testes dos Switches Aruba CX no EVE-NG no link abaixo: Microsoft Word – Aruba AOS-CX Simulator – EVE-NG Deploy NEW.docx

Até logo!

AOS-CX Switch Simulator – Lab Guides

A Aruba disponibiliza laboratórios guiados para a configuração dos Switches Aruba CX Estes documentos irão guiá-lo através de alguns cenários e tecnologias típicos de funcionalidades do AOS-CX. Sinta-se à vontade para baixá-los, implementá-los e depois fazer alterações, variações e melhorias:

Using the AOS-CX Switch Simulator – Lab Guides | AOS-CX Switch Simulator

Até a próxima!

Comware 7: Configuração de VXLAN com BGP EVPN

O Ethernet Virtual Private Network (EVPN) é uma tecnologia VPN de Camada 2 VPN que fornece conectividade entre dispositivos tanto em Camada 2 como para Camada 3 através de uma rede IP. A tecnologia EVPN utiliza o MP-BGP como plano de controle (control plane) e o VXLAN como plano de dados/encaminhamento (data plane) de um switch/roteador. A tecnologia é geralmente utilizada em data centers em ambiente multitenant ( com múltiplos clientes e serviços) com grande tráfego leste-oeste.

A configuração do EVPN permite ao MP-BGP automatizar a descoberta de VTEPs, assim como o estabelecimento de tuneis VXLAN de forma dinâmica, a utilização de IRB (Integrated Routing and Bridging) anuncia tanto as informações  de Camada 2 e 3 para acesso ao host, fornecendo a utilização do melhor caminho através do ECMP e minimizando flood do trafego multidestination (BUM: broadcast,unicast unknown e multicast)  .

Em resumo o EVPN possui um address Family que permite que as informações de MAC, IP, VRF e VTEP sejam transportadas sobre o MP-BGP, que assim permitem aos VTEPs aprender informações sobre os hosts (via ARP/ND/DHCP etc.).

O BGP EVPN distribui e fornece essa informação para todos os outros pares BGP-EVPN dentro da rede.

Relembrando o VXLAN

O VXLAN prove uma rede de camada 2 sobreposta (overlay) em uma rede de camada 3 (underlay). Cada rede sobreposta é chamada de segmento VXLAN e é identificada por um ID único de 24 bits chamado VNI – VXLAN Network Identifier ou VXLAN ID.

A identificação de um host vem da combinação do endereço MAC e o VNI.  Os hosts situados em VXLANs diferentes não podem comunicar entre si (sem a utilização de um roteador). O pacote original enviado por um host na camada 2 é encapsulado em um cabeçalho VXLAN que inclui o VNI associado ao segmento VXLAN que aquele host pertence.

Os equipamentos que transportam os tuneis VXLAN são chamados de VTEP (VXLAN tunnel endpoints).

Quando um VXLAN VTEP ou tunnel endpoint comunica-se com outros VXLAN VTEP, um túnel VXLAN é estabelecido. Um túnel é meramente um mecanismo de transporte através de uma rede IP.

Todo o processamento VXLAN é executado nos VTEPs. O VTEP de entrada encapsula o tráfego com cabeçalho VXLAN, mais um cabeçalho UDP externo , mais um cabeçalhos IP externo, e então encaminha o tráfego por meio de túneis VXLAN. O VTEP do destino remove o encapsulamento VXLAN e encaminha o tráfego para o destino.

Os dispositivos da rede IP de transporte encaminham o tráfego VXLAN apenas com base no cabeçalho IP externo dos pacotes VXLAN (eles não precisam ter suporte à tecnologia VXLAN).

Um outro ponto importante é que a tecnologia VXLAN supera as limitações de apenas 4 mil domínios de broadcast fornecido por VLANs para até 16 milhões de domínios de broadcast com VNIs. Já para as limitações do Spanning-Tree que coloca os caminhos redundantes em estado de bloqueio, a tecnologia VXLAN permite a construção de todos os uplinks como parte de um backbone IP (rede underlay), utilizando protocolos de roteamento dinâmico para escolha do melhor caminho ao destino, assim fazendo uso do ECMP (Equal Cost Multipath) em uma topologia Spine-Leaf, por exemplo.

BGP EVPN

O BGP EVPN difere do comportamento “Flood and Learn” executado por tuneis VXLANs em diversas maneiras. Enquanto o tráfego multidestination (BUM: broadcast,unicast unknown e multicast) encaminhado pelo VXLAN sem o BGP EVPN necessita de utilizar grupos multicast, o EVPN permite a replicação da identificação dos dispositivos finais com o MP-BGP , assim como as informações do VTEP que ele está associado. As comunicações ARP para IPv4 também pode ser suprimida, aprimorando assim a eficiência do transporte dos dados.

LAB

No laboratório abaixo utilizamos os roteadores HP VSR no release R0621P18-X64, no EVE-NG.

Ambos os Spines estão configurados como VTEP e encaminharão o tráfego do VXLAN VNI 10. A instancia criada para esse cliente, chamamos de ‘clientea’.

Spine está configurado como BGP Router Reflector fechando peerring com ambos Leafs. Nenhum Leaf fecha peering BGP entre si, somente como Spine.

Configuração SPINE 1

#
 sysname Spine-01
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.1 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.11 255.255.255.255
#
interface GigabitEthernet1/0
description CONEXAO_LEAF3
 ip address 192.168.13.1  255.255.255.0
#
interface GigabitEthernet2/0
description CONEXAO_LEAF4
 ip address 192.168.14.1 255.255.255.0
#
ospf 1 router-id 192.168.0.1
 description UNDERLAY_OSPF
 area 0.0.0.0
  network 192.168.0.1 0.0.0.0
  network 192.168.0.11 0.0.0.0
  network 192.168.14.0 0.0.0.255
  network 192.168.13.0 0.0.0.255
#
bgp 65001
 group evpn internal
 peer evpn connect-interface LoopBack1
 peer 192.168.0.33 group evpn
 peer 192.168.0.44 group evpn
 #
 address-family l2vpn evpn
  undo policy vpn-target
  peer evpn enable
  peer evpn reflect-client
#

Configuração LEAF 3

#
 sysname Leaf-03
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.3 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.33 255.255.255.255
#
interface GigabitEthernet1/0
description CONEXAO_SPINE1
 ip address 192.168.13.3 255.255.255.0
 ospf network-type p2p
#
ospf 1 router-id 192.168.0.3
 description UNDERLAY_OSPF
 area 0.0.0.0
  network 192.168.0.3 0.0.0.0
  network 192.168.0.33 0.0.0.0
  network 192.168.13.0 0.0.0.255
#
bgp 65001
 peer 192.168.0.11 as-number 65001
 peer 192.168.0.11 connect-interface LoopBack1
 #
 address-family l2vpn evpn
  peer 192.168.0.11 enable
#
 vxlan tunnel mac-learning disable
#
 l2vpn enable
#
vsi clientea
 arp suppression enable
 vxlan 10
 evpn encapsulation vxlan
  route-distinguisher auto
  vpn-target auto export-extcommunity
  vpn-target auto import-extcommunity
  quit
#
interface GigabitEthernet3/0
 xconnect vsi clientea
#

Configuração LEAF 4

#
 sysname Leaf-04
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.4 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.44 255.255.255.255
#
interface GigabitEthernet2/0
description CONEXAO_SPINE2
 ip address 192.168.14.4 255.255.255.0
  ospf network-type p2p
#
ospf 1 router-id 192.168.0.4
 area 0.0.0.0
  network 192.168.0.4 0.0.0.0
  network 192.168.0.44 0.0.0.0
  network 192.168.14.0 0.0.0.255
#
bgp 65001
 peer 192.168.0.11 as-number 65001
 peer 192.168.0.11 connect-interface LoopBack1
 #
 address-family l2vpn evpn
  peer 192.168.0.11 enable
#
 vxlan tunnel mac-learning disable
#
 l2vpn enable
#
vsi clientea
 arp suppression enable
 evpn encapsulation vxlan
  route-distinguisher auto
  vpn-target auto export-extcommunity
  vpn-target auto import-extcommunity
  quit
  vxlan 10
  quit
#
interface GigabitEthernet3/0
 xconnect vsi clientea
#

Comandos Display bgp l2vpn evpn

Comando display vxlan tunnel

Referências

R2702-HPE FlexFabric 5940 & 5930 Switch Series EVPN Configuration Guide

KRATTIGER, Lukas; KAPADIA, Shyam; JANSEN, David; Building Data Centers with VXLAN BGP EVPN – A Cisco NX-OS Perspective – 2017 CiscoPress

Switches ArubaOS-CX: Criando seu ambiente de LAB no GNS3, EVE-NG e Virtual Box

Galera, a Aruba criou alguns guias para provisionamento de laboratórios para estudo e
testes do Switch ArubaOX-CX para uso no GNS3, Virtual Box e EVE-NG

Para implementação no GNS3-VM

https://community.arubanetworks.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=31b1a2f7-0fda-4e21-9b44-a7336f28880e

Para implementação no GNS3 com Virtual Box

https://community.arubanetworks.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=511cdab8-1a97-44ba-b707-e6f79fc80312

Para implementação no EVE-NG

https://community.arubanetworks.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=99d1b233-5b7e-434f-b59c-e1e59594977f

Caso queira utilizar os documentos de laboratórios guiados produzidos pela Aruba
(com quase todas as funcionalidades), acesse:

Para baixar os ícones e utilizar no seu ambiente de lab, baixe em:

Vídeo: Switches ArubaOS-CX – Configurando STP Root-Guard e Loop-Guard no EVE-NG

Nesse video, montamos um laboratório no EVE-NG com Switches ArubaOS-CX demonstrando a configuração do Spanning-Tree e das funcionalidades Root-Guard e Loop-Guard.

Root Guard: A configuração da porta como Root Guard permite à uma porta Designada a prevenção do recebimento de BPDU’s superiores, que indicariam outro Switch com melhor prioridade para tornar-se Root, forçando a porta a cessar comunicação, isolando assim o segmento. Após encerrar o recebimento desses BPDU’s a interface voltará à comunicação normalmente.

Loop Guard: A configuração da porta como Loop Guard possibilita aos Switches não-Root, com caminhos redundantes ao Switch Raiz, evitar situações de Loop na falha de recebimentos de BPDU’s em portas com caminhos redundantes. Em um cenátio atípico, quando uma porta alternativa parar de receber BPDU (mas ainda UP) ela identificará o caminho como livre de Loop e entrará em modo de encaminhamento criando assim um Loop lógico em toda a LAN. Nesse caso a funcionalidade deixará a porta alternativa sem comunicação (como blocking em loop-inconsistent) até voltar a receber BPDU’s do Switch Root.