Comware: Alterando a distância administrativa para as rotas estáticas para Switches e Roteadores

Eu já escrevi alguns post sobre a atenção que deve ser dada para a integração entre Switches e Roteadores baseados no Cowmare quando há a necessidade de compartilhar o roteamento dinâmico.

Como no exemplo abaixo, podemos ver que por padrão, toda rota estática é atribuída com o valor 60 para a distância administrativa. De forma didática, faço a comparação nas duas saídas do comando “display ip routing-table” da escolha da tabela de Roteamento pela rota aprendida com a menor distância adminstrativa (no primeiro quadro via rota estática e no segundo exemplo via OSPF).

[Switch] ip route-static 192.168.10.0 255.255.255.0 192.168.12.2
[Switch]
[Switch] display ip routing-table
Routing Tables: Public
Destinations : 5 Routes : 5

Destination/Mask Proto Pre Cost NextHop Interface

127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0
127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0
192.168.10.0/24 Static 60 0 192.168.12.2 Eth0/0/0
192.168.12.0/30 Direct 0 0 192.168.12.1 Eth0/0/0
192.168.12.1/32 Direct 0 0 127.0.0.1 InLoop0

Com a rota aprendida dinâmicamente via OSPF (e a estática ainda configurada), percebam que o roteador insere apenas a rota com a menor distância administrativa (valor 10 para o OSPF).

[Switch]display ip routing-table
Routing Tables: Public
Destinations : 5 Routes : 5

Destination/Mask Proto Pre Cost NextHop Interface

127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0
127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0
192.168.10.0/24 OSPF 10 2 192.168.12.2 Eth0/0/0
192.168.12.0/30 Direct 0 0 192.168.12.1 Eth0/0/0
192.168.12.1/32 Direct 0 0 127.0.0.1 InLoop0

Apesar da rota aprendida dinâmicamente “tomar” o lugar da rota estática e possuir o mesmo next-hop (no caso 192.168.12.2, interface Eth0/0/0), em redes mais complexas, o roteamento poderia escolher um caminho menos desejado pelo administrador de rede, visto que em equipamentos de outros fabricantes as rotas estáticas são atribuídas com a distâncias administrativa 1 ( e isso pode passar desapercebido ).

O comando “ip route-static default-preference 1” ajuda aqueles que estão acostumados a trabalhar com ambos roteamento dinâmico e estático, permitindo que as novas rotas configuradas possuam a distância adminstrativa 1 (nesse caso, melhor que todos os protocolos de Roteamento Dinâmico).

[Switch] ip route-static default-preference 1

Caso você prefira escolher manualmente o peso que cada rota terá, basta adicionar o “preference” no final de cada rota.

[Switch] ip route-static 192.168.20.0 255.255.255.0 192.168.12.2  preference ?
INTEGER Preference value range

Abração

Comware: OSPF – Roteador Designado (DR) e Roteador Designado de Backup (BDR)

Para o estabelecimento de uma adjacência no OSPF os Roteadores vizinhos devem se reconhecer para trocarem informações, encaminhando e recebendo mensagens Hello nas Interfaces participantes do OSPF; no endereço de Multicast 224.0.0.5.

Durante estabelecimento da Adjacência, serão trocadas informações dos Roteadores da Rede como a informação da área, prioridade dos Roteadores, etc. Após a sincronizarem as informações, os Roteadores da área terão a mesma visão da Topologia e rodarão o algoritmo SPF para escolha do melhor caminho para chegar ao Destino.

Os Roteadores (já) Adjacentes encaminharão mensagens Hellos ( verificação da disponibilidade), mensagens LSA com as atualizações da rede e mensagens a cada 30 minutos de refresh de cada LSA para certificar que os a tabela OSPF (LSDB) esteja sincronizada.

Durante a falha de um Link, a informação é inundada (flooded) para todos os Roteadores Adjacentes da Área. 

Em ambientes Multiacesso como redes Ethernet, os Roteadores OSPF elegem um Roteador Designado (DR) para formar Adjacência e encaminhar os LSA’s somente para ele. O Roteador DR reencaminha os updates recebidos por um vizinho para os outros Roteadores na mesma LAN.

Há também a eleição de um Roteador Desingnado de Backup (BDR) para assumir em caso de falha do DR.

O método de eleição do DR e BDR é bastante efetivo e confiável para estabelecimento de Adjacências e mensagens trocadas para manutenção do OSPF, economizando assim recursos conforme o crescimento da Topologia.

Quando ocorre uma mudança na topologia o Roteador/Switch encaminha uma mensagem em Multicast para o endereço 224.0.0.6 que é destinada a todos Roteadores OSPF DR/BDR.

Após o recebimento do Update, o Roteador DR confirma o recebimento (LSAck) e reencaminha a mensagem para os demais roteadores da rede no endereço de Multicast 224.0.0.5; após o recebimento da atualização todos os roteadores deverão confirmar a mensagem ao Roteador Designado (LSAck), tornando o processo confiável.

Se algum Roteador estiver conectado à outras redes, o processo de flood é repetido!

Obs: O BDR não efetua nenhuma operação enquanto o DR estiver ativo!

Como é feita a eleição do DR e BDR? 

Durante o processo de estabelecimento de Adjacência é verificado o campo Priority na troca de mensagens Hello. O Roteador com maior valor é eleito o DR e o Roteador com segundo maior valor é eleito o BDR ( em cada segmento).

O valor default da prioridade de todos os Roteador é 1, no caso de empate, é escolhido o valor do ID do Roteador para desempate. Vence quem tiver o maior valor!

Obs: Se a prioridade for configurada como 0, o dispositivo nunca será um DR ou BDR. Nesse caso ele será classificado com DROther ( não DR e não BDR) 

Configurando
O valor da prioridade deverá ser configurado na Interface VLAN ou física (Ethernet, GigabitEthernet, etc) dos Switches/Roteadores com o processo de OSPF ativo:

interface Vlan-interface1
ip address 192.168.0.26 255.255.255.0
ospf dr-priority 3
!Configurando a Prioridade para eleição do DR/BDR com o valor 3

Porém….

A prioridade do DR e do BDR não é preemptiva, isto é, para manter a estabilidade da topologia se um dispositivo for eleito como DR e BDR, o mesmo não perderá esse direito até ocorrer algum problema no link ou no dispositivo eleito.

Conforme comando display abaixo em Switches Comware, o Switch configurado com a prioridade 3 perde a eleição (de tornar-se o DR) para dispositivo com a prioridade 4 ( pelo fato de ser inserido na topologia posteriormente a eleição do DR/BR).

[COMWARE]display ospf peer
OSPF Process 100 with Router ID 192.168.0.5
Neighbor Brief Information

Area: 0.0.0.0
Router ID Address Pri Dead-Time Interface State

192.168.0.13 192.168.0.13 0 38 Vlan1 Full/DROther
192.168.0.14 192.168.0.14 1 31 Vlan1 Full/DROther
192.168.0.20 192.168.0.20 1 34 Vlan1 Full/DROther
192.168.0.21 192.168.0.21 4 30 Vlan1 Full/DR
!Roteador DR com a prioridade 4

192.168.0.26 192.168.0.26 5 31 Vlan1 Full/DROther
! Roteador DROther com a prioridade 5 só será o DR na falha do DR e BDR
192.168.0.33 192.168.0.33 1 32 Vlan1 Full/BDR
! Roteador BDR com a prioridade 1
192.168.0.45 192.168.0.45 1 40 Vlan1 Full/DROther

O Switch com a Prioridade 5, irá tornar-se DR somente após falha no DR e no BDR.

Referencias:

Building Scalable Cisco Internetworks – Diane Teare/Catherine Paquet

Duvidas? Deixe um comentário!

Um grande abraço

Comware 7: QoS – Efetuando a marcação de Pacotes com Policy

A densidade de portas e banda disponivel em modernos Switches empilhaveis ou modulares permite um bom desempenho na comunicação entre Serviços na Rede Local.

Em modelos de QoS a utilização de Switches tem a função de permitir a confiança (trust) de pacotes ja marcados na origem como Telefones IP e Aplicações para tratamento em Links congestionados como em uma rede WAN , incluindo tambem a marcação e a remarcação de pacotes para o mesmo fim.

A atribuição de QoS em Roteadores ocorre devido ao gargalo gerado por Links 100/1000/10000Gbps de Switches em contraste com Links de comunicação via Internet ou Redes Privadas que são proporcionamente menores que a vazão do tráfego necessária.

Para a tratativa do tráfego utilizamos filas de prioridade com a utilização de algoritmos como WRR,WFQ,SP e etc.

Na necessidade de atribuir a marcação de um determinado tráfego para diferentes politicas de Qualidade de Serviço (QoS) é possível utilizar o seguinte esquema:

ACL: Não mandatória, permite a seleção de trafego para filtro de classificação de tráfego;

Classifier: Classificação do trágego (baseado em uma ACL, Tag de VLAN, etc)
Behavior: Comportamento para o tráfego , como por exemplo, marcação IP Precedence no pacote IP, descarte de pacote, etc
Policy: Permite o vinculo da classificação com o comportamento para ser atribuido a uma interface.

Configurando
No script abaixo mostraremos um exemplo de configuração para marcação do tráfego de qualquer origem com destino a porta TCP 50001:

acl number 3000
! Criando uma ACL avançada
rule permit tcp destination-port eq 50001
! Permitindo qualquer origem efetuar conexão TCP na porta de destino 50001
#
traffic classifier AF32 operator and
! Criando a classificaçaõ com o nome AF32
if-match acl 3000
!Dando match na ACL 3000 para futura utilização 
#
traffic behavior AF32
! Criando o comportamento com nome AF32
remark dscp af32
! Marcando/Remarcando o tráfego que será classificado com o valor dscp af32 
!( notação 28 em decimal)
accounting
! Efetuando a contagem dos pacotes marcados (opção não obrigatória)
#
qos policy MARKING
!Criando a policy com o nome MARKING
classifier AF32 behavior AF32
! Vinculando a classificação com nome AF32 com o comportamento com nome AF32 
!( não é obrigatório utilizar o mesmo nome no classifier e no behavior)
#
interface GigabitEthernet1/0/2
description INTERFACE_INBOUND_ACESSO_INTERNO
qos apply policy MARKING inbound 
! Permite a marcação do tráfego com a policy MARKING na entrada do pacote
qos trust dscp
! Não remarca os pacotes não listados na policy.
! Confiando na marcaçaõ dscp do pacote

Obs: No exemplo acima, após satisfazer as condições da politica de marcação IP Precedence, o pacote irá manter o valor até o fim da comunicação para ser tratado pelos dispositivos no caminho caso seja necessário. Como por exemplo, na separação do tráfego, usando a sua marcação AF32( notação 28 em decimal) em contraste com um pacote não marcado. 

Uma boa semana a todos!

Comware7: uRPF

A funcionalidade uRPF (Unicast Reverse Path Forwarding) protege a rede contra ataques do tipo spoofing. A técnica de spoofing é utilizada por atacantes que falsificam o endereço IP de origem do pacote para os mais diversos fins.

O uRPF pode impedir esses ataques de spoofing com o endereço de origem. Ele verifica se a interface que recebeu um pacote é a interface de saída na FIB, que corresponde ao endereço de origem do pacote. Caso contrário, a uRPF considera um ataque de falsificação e descarta o pacote.

Lembrando que por padrão, para o encaminhamento de pacotes, o roteador valida apenas o endereço de destino de um pacote IP.

Exemplo

Em um exemplo simples, é como se um roteador com uma interface com o endereço de LAN 192.168.1.0/24 receber um pacote com o endereço de origem 172.16.1.20. Esse endereço não faz parte da rede local.

Modos uRPF

O uRPF possui 2 modos distintos (strict e loose) que podem potencialmente ajudar a reduzir ataques com endereços IP falsificados.

[R2-GigabitEthernet1/0] ip urpf ?
  loose   Don't check interface
  strict  Check interface
  • Strict uRPF – Para passar a verificação estrita do uRPF, o endereço de origem de um pacote deve ser correspondente ao endereço de destino da interface de saída da FIB. Em alguns cenários (por exemplo, roteamento assimétrico), o Strict uRPF estrito pode descartar pacotes válidos. O Strict uRPF estrito é frequentemente implantado entre um PE e um CE.
[R2-GigabitEthernet1/0] ip urpf strict
  • Loose uRPF – Para passar a verificação Loose uRPF, o endereço de origem de um pacote deve corresponder o endereço de destino de uma entrada qualquer da FIB. O Loose uRPF pode evitar descartar pacotes válidos, mas pode deixar passar pacotes de um atacante. O Loose uRPF é frequentemente implementado entre ISPs, especialmente em roteamento assimétrico.
 [R2-GigabitEthernet1/0] ip urpf loose

Rota Default

Caso o endereço seja apenas conhecido via rota default, o uRPF continuará bloqueando os endereços. Para permitir os endereços a partir da rota default use o comando “allow-default-route” após a configuração do modo strict ou do loose:

[R2-GigabitEthernet1/0]ip urpf strict allow-default-route

É possível validar o descarte de pacotes através do debug ip urpf

<R2> debug ip urpf
*Jan  2 12:21:11:074 2019 R2 URPF/7/debug_info:
uRPF  URPF-Discard: Packet from 10.12.0.27 via GigabitEthernet2/0
*Jan  2 12:21:11:074 2019 R2 URPF/7/debug_info:
uRPF  URPF-Discard: Packet from 10.12.0.27 via GigabitEthernet2/0

Até logo!

Comware 7: Roteamento entre VRFs com MP-BGP

A utilização de VRFs (Virtual Routing and Forwarding) em Roteadores permite a criação de tabelas de roteamentos virtuais que trabalham de forma independente da tabela de roteamento “normal”, protegendo os processos de roteamento de cada cliente de forma individual.

Empresas que prestam serviços de gerenciamento de rede ou monitoração, empresas que vendem serviços em Data Center e provedores de serviço utilizam largamente VRFs, otimizando assim a administração e o retorno financeiro no total do custo de um projeto.

Já o Roteamento entre VRFs ocorre quando há a necessidade de comunicarmos diferentes tabelas de roteamento que estão segregadas por VRF, para compartilharem alguns ou todos os prefixos. Há diversas formas de configurarmos o roteamento entre VRFs, como por exemplo com a utilização de um cabo virado para o próprio roteador com as portas em diferente VRFs [apontando assim uma rota para  nexthop da proxima VRF; ou com algum IGP] e também com a utilização de um outro roteador, etc; nesse post explicaremos o roteamento interVRF com o processo MPBGP que é a maneira mais escalável… preparados? Então vamos lá… 

Habilitando o import e export das VRFs

Ao configurarmos o processo de roteamento entre VRFs em um mesmo roteador , dois valores de extrema importancia devem ser configurados na VRF: o RD (route distinguisher) e o RT (route target)

RD – Route Distinguisher

Como explicado anteriormente,  as VRFs permitem a reutilização de endereços IP em diferentes tabelas de roteamento. Por exemplo, suponha que você tenha que conectar a três diferentes clientes , os quais estão usando 192.168.1.0/24 em sua rede local. Podemos designar a cada cliente a sua própria VRF de modo que as redes sobrepostas são mantidas isoladas em suas VRFs .

O RD funciona mantendo o controle de quais rotas 192.168.1.0/24 pertencem a cada cliente  como um diferenciador de rota (RD) para cada VRF. O route distinguisher é um número único adiciondo para cada rota dentro de uma VRF para identificá-lo como pertencente a essa VRF ou cliente particular. O valor do RD é carregado juntamente com uma rota através do processo MP- BGP quando o roteador troca rotas VPN com outros Roteadores PE.

O valor RD é de 64 bits e é sugerido a configuração do valor do RD como ASN::nn ou endereçoIP:nn. Mas apesar das sugestões, o valor é apenas representativo.

[R1-vpn-instance-Cliente_A]route-distinguisher ?
  STRING  ASN:nn or IP_address:nn  VPN Route Distinguisher
!
! Configurando a VRF para os clientes A B e C 
ip vpn-instance Cliente_A
 route-distinguisher 65000:1
!
ip vpn-instance Cliente_B
 route-distinguisher 65000:2
!
ip vpn-instance Cliente_C
route-distinguisher 65000:3

Quando rotas VPN são anunciados entre os roteadores PE via MP-BGP, o RD é incluído como parte da rota, juntamente com o prefixo IP. Por exemplo, uma via para 192.0.2.0/24 na VRF Cliente_B é anunciado como 65000:2:192.0.1.0 / 24.

RT – Route-Target ou VPN-target

Considerando que o valor do RD é utilizado para manter a exclusividade entre rotas idênticas em diferentes VRFs, o RT (route target)é utilizado para compartilhar rotas entre eles. Podemos aplicar o RT para uma VRF com o objetivo de controlar a importação e exportação de rotas entre ela e outras VRFs.

O route target assume a forma de uma comunidade BGP estendida com uma estrutura semelhante à de um RD (que é, provavelmente, porque os dois são tão facilmente confundidos).

Segue abaixo um exemplo de configuração, onde o Cliente_A fará o roteamento entre VRFs com o Cliente_B, já o Cliente_C continuará com a sua VRF isolada dos outros clientes.

!
!
ip vpn-instance Cliente_A
route-distinguisher 65000:1
vpn-target 65000:1 export-extcommunity
vpn-target 65000:1 import-extcommunity
vpn-target 65000:2 import-extcommunity
!
ip vpn-instance Cliente_B
route-distinguisher 65000:2
vpn-target 65000:2 export-extcommunity
vpn-target 65000:2 import-extcommunity
vpn-target 65000:1 import-extcommunity
!
ip vpn-instance Cliente_C
route-distinguisher 65000:3
vpn-target 65000:3 export-extcommunity
vpn-target 65000:3 import-extcommunity
!

egue abaixo a configuração das interfaces de cada VRF , e o processo MP-BGP responsável por funcionar o import/export de prefixos das VRFs.

!
!
interface Loopback0
 ip address 192.168.1.1 255.255.255.0
!
interface Loopback1
 ip binding vpn-instance Cliente_A
 ip address 1.1.1.1 255.255.255.0
!
interface Loopback2
 ip binding vpn-instance Cliente_B
 ip address 2.2.2.2 255.255.255.0
!
interface Loopback3
 ip binding vpn-instance Cliente_C
 ip address 3.3.3.3 255.255.255.0
!
#
bgp 6500
 undo synchronization
#
 ipv4-family vpn-instance Cliente_A
  import-route direct
#
 ipv4-family vpn-instance Cliente_B
  import-route direct
#
 ipv4-family vpn-instance Cliente_C
  import-route direct
#
!

Segue abaixo os outputs das rotas aprendidas para o roteamento entre VRFs(vpn-instances) e o teste de ICMP

[R1]display ip routing-table vpn-instance Cliente_A
Routing Tables: Cliente_A
        Destinations : 4        Routes : 4
Destination/Mask    Proto  Pre  Cost         NextHop         Interface
1.1.1.1/32          Direct 0    0            127.0.0.1       InLoop0
2.2.2.2/32          BGP    130  0            127.0.0.1       InLoop0
127.0.0.0/8         Direct 0    0            127.0.0.1       InLoop0
127.0.0.1/32        Direct 0    0            127.0.0.1       InLoop0

[R1]ping -vpn-instance Cliente_A 2.2.2.2
  PING 2.2.2.2: 56  data bytes, press CTRL_C to break
    Reply from 2.2.2.2: bytes=56 Sequence=1 ttl=255 time=4 ms
    Reply from 2.2.2.2: bytes=56 Sequence=2 ttl=255 time=10 ms
    Reply from 2.2.2.2: bytes=56 Sequence=3 ttl=255 time=10 ms
    Reply from 2.2.2.2: bytes=56 Sequence=4 ttl=255 time=5 ms
    Reply from 2.2.2.2: bytes=56 Sequence=5 ttl=255 time=4 ms
 --- 2.2.2.2 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 4/5/10 ms

Para dúvidas em sugestões deixe um comentário. 

Comware 7 – Configurando o GRE

O GRE (Generic Routing Encapsulation) é um protocolo de tunelamento que pode encapsular diversos protocolos dentro de tuneis IP, criando links ponto-a-ponto virtuais entre roteadores remotos.

O protocolo é extremamente funcional em diversos cenários, pois foi desenvolvido para permitir que redes remotas pareçam estar diretamente conectadas. Como o GRE não faz a criptografia, o GRE pode trabalhar em conjunto com IPsec para garantir a integridade das informações quando necessário.

Abaixo podemos observar a representação do encapsulamento de um pacote IP pelo GRE como também a inclusão de um novo cabeçalho.

O interessante é que o protocolo de transporte poderia ser o IPv6 e o protocolo encapsulado poderia ser o IPX, tráfego Multicast, etc; E ao ser entregue ao roteador de destino, o novo cabeçalho é removido e o pacote é entregue intacto.

Segue abaixo um exemplo de configuração de um túnel GRE para Roteadores com o Comware 7, fechando a adjacência OSPF entre 2 roteadores separados por uma rede MPLS. Nos testes usamos o roteador HP VSR1000.

Tabela de Rotas e tracert do Roteador R2

[R2]disp ip routing-table | inc O
192.168.1.0/24     O_INTRA 10  1563        192.168.13.1    Tun0

<R2>tracert 192.168.13.1
traceroute to 192.168.13.1 (192.168.13.1), 30 hops at most, 52 bytes each packet, press CTRL_C to break
 1  192.168.23.2 (192.168.23.2)  0.488 ms  0.523 ms  1.668 ms
 2  192.168.13.1 (192.168.13.1)  0.962 ms  5.463 ms  0.881 ms

<R2>tracert 192.168.1.1
traceroute to 192.168.1.1 (192.168.1.1), 30 hops at most, 52 bytes each packet, press CTRL_C to break
 1  192.168.1.1 (192.168.1.1)  1.116 ms  2.588 ms  1.731 ms

Comware 5: Protocolo de Tunelamento GRE

GRE (Generic Routing Encapsulation) é um protocolo de tunelamento que pode encapsular diversos protocolos dentro de túneis IP, criando links ponto-a-ponto virtuais entre roteadores remotos.

O protocolo é extremamente funcional em diversos cenários, pois foi desenvolvido para permitir que redes remotas pareçam estar diretamente conectadas. Como GRE não criptografa as informações que são transmitidas através do túnel, podemos utilizar o GRE em conjunto com IPsec para garantir a integridade das informações.

Abaixo podemos observar a representação de encapsulamento  de um pacote IP pelo GRE e a  inclusão de um novo cabeçalho.

O interessante é que o protocolo de transporte poderia ser o IPv6 e o protocolo encapsulado  poderia ser o IPX, tráfego Multicast, etc; E ao ser entregue ao roteador de destino, o novo cabeçalho é removido e o pacote é entregue intacto.

Agora você deve estar se perguntando. Em quais situações podemos usar o GRE ? Veja  o cenário:

Você em um dia normal como analista de redes e seu gerente de TI te informa que  sua   empresa acaba de adquirir uma nova filial e eles precisam ter acesso a alguns servidores que   estão na rede local do ambiente que você administra.  Depois de concluir todo processo de contratação do link e a conectividade com a filial estar finalizada, seu gerente de TI lhe informa   que na nova filial utilizará OSPF para declarar as redes locais.

Agora você pensa: como podemos configurar o OSPF nesses roteadores se eles não estão diretamente conectados? Como administrar o processo de roteamento via uma rede gerenciada pela Operadora como por exemplo, com MPLS,  que não está emulando um Lan-to-Lan ? É ai que entra o Túnel GRE.

Configuração

Antes de criar o tunnel, certifique-se que a origem e o destino mapeados na Interface Tunnel estejam acessíveis via roteamento. No nosso exemplo, usaremos  a Loopback.

Como os roteadores simularão uma conexão ponto-a-ponto, eles irão trocar informações  de  roteamento através do túnel como se estivessem diretamente conectados.

Por padrão o Comware habilita o protocolo GRE em túneis sem a necessidade de configuração adicional. Caso você precise utilizar uma Interface Tunnel para alguma outra função, segue abaixo algumas possibilidades:

[RA-Tunnel10]tunnel-protocol ?
  dvpn       Dynamic Virtual Private Network
  gre        Generic Routing Encapsulation
  ipsec      IPsec tunnel encapsulation
  ipv4-ipv4  tunnel mode ipv4 over ipv4
  ipv4-ipv6  tunnel mode ipv4 over ipv6
  ipv6-ipv4  tunnel mode ipv6 over(to) ipv4
  ipv6-ipv6  tunnel mode ipv6 over ipv6
  mpls       Multiprotocol Label Switching

Considerações para a utilização de Tunnel em Switches HP baseados no Comware

A utilização de interface Tunnel em Switches HP baseados no Comware pode ser um pouco mais complicada que em roteadores. Antes de utilizarmos o processo acima  é necessário criar uma configuração de “Service Loopback” (em alguns modelos de Switches), vincular à uma porta não utilizada (vazia) e também vincular o serviço ao Tunnel. Segue abaixo os passos:

• Crie um “tunnel-type service loopback group’.

• Adicione uma porta não utilizada ao “Service loopback group”.

# Criando o “Service-loopback” group 1 e especificando o tipo como tunnel.
[SwitchA] service-loopback group 1 type tunnel

# Vinculando a porta Giga 1/0/3 para o “Service-loopback” group 1. 
#Desabilite o STP e o LLDP da interface.
[SwitchA] interface GigabitEthernet 1/0/3
[SwitchA-GigabitEthernet1/0/3] undo stp enable
[SwitchA-GigabitEthernet1/0/3] undo lldp enable
[SwitchA-GigabitEthernet1/0/3] port service-loopback group 1
[SwitchA-GigabitEthernet1/0/3] quit

# Aplique  o “Service-loopback” group 1 à interface tunnel.
[SwitchA] interface tunnel 0
[SwitchA-Tunnel0] service-loopback-group 1
[SwitchA-Tunnel0] quit
# O tunnel ficará up mesmo que a outra ponta não esteja configurada

Até a próxima

Comware 7: OSPF Virtual Link

O desenho de uma rede OSPF requer que todas as áreas estejam diretamente conectadas à Area Backbone (Area 0 [zero]) e que os roteadores da Area 0 estejam sempre conectados com roteadores da mesma área.

Para conexão entre roteadores de diferentes áreas, o tráfego deve passar sempre pela Area 0.

Um virtual link é um link lógico que permite a conexão entre equipamentos da Area 0 que estão separados logicamente mas podem utilizar uma outra Area OSPF como trânsito, ou entre áreas não-Backbone que precisam utilizar outra área como transito:

O OSPF virtual link deve ser usado somente em casos específicos, conexões temporárias ou cenários de backup em caso de falha.

Configurando OSPF Virtual link

No exemplo abaixo, o virtual link servirá na conexão entre dois roteadores da Area 0 que estão separados por uma falha no link.

R1
#
ospf 1
  area 0.0.0.0
  network 192.168.1.0 0.0.0.255
  network 192.168.11.0 0.0.0.255
 area 0.0.0.1
  network 192.168.12.0 0.0.0.255
  vlink-peer 192.168.3.3
#
R3
#
ospf 1
 area 0.0.0.0
  network 192.168.3.0 0.0.0.255
  network 192.168.33.0 0.0.0.255
 area 0.0.0.1
  network 192.168.23.0 0.0.0.255
  vlink-peer 192.168.1.1
#

Comandos display

[R1]display  ospf vlink
         OSPF Process 1 with Router ID 192.168.1.1
                 Virtual Links
 Virtual-link Neighbor-ID  -> 192.168.3.3, Neighbor-State: Full
 Interface: 192.168.12.1 (GigabitEthernet0/0)
 Cost: 2  State: P-2-P  Type: Virtual
 Transit Area: 0.0.0.1
 Timers: Hello 10, Dead 40, Retransmit 5, Transmit Delay 1

#
 [R1]display ospf peer
         OSPF Process 1 with Router ID 192.168.1.1
               Neighbor Brief Information
 Area: 0.0.0.1
 Router ID       Address         Pri Dead-Time  State             Interface
 192.168.12.2    192.168.12.2    1   35         Full/DR           GE0/0
 Virtual link:
 Router ID       Address         Pri Dead-Time  State             Interface
 192.168.3.3     192.168.23.3    1   36         Full              GE0/0

Até breve

Comware 7: VRF (VPN-Instance)

A utilização de VRF (Virtual Routing and Forwarding) permite a criação de tabelas de roteamentos virtuais em Switches e Roteadores, independentes da tabela de roteamento “normal”(geralmente chamada de tabela de roteamento global [Global Routing Table]).

Da mesma forma como a utilização de VLANs em Switches Ethernet permitem a divisão de dominios de broadcasts e mapeamentos da tabela MAC, a utilização de VRF permite a virtualização da tabela de roteamento. Nos Switches e Roteadores utilizando o Sistema Operacional Comware (3Com, H3C e HP) a feature é chamada de “vpn-instance“.

Comware 7 : Configurando PBR (Policy-Based Routing)

A maneira como efetuamos o roteamento de pacotes baseado endereço de destino do cabeçalho IP  possui algumas restrições que não permitem o balanceamento de tráfego de maneira granular de acordo com perfis das aplicações, dessa forma todos os pacotes são roteados para o mesmo lugar sem levarmos em conta a rede de origem, protocolo, etc.

A utilização de PBR, policy-based routing, permite ao engenheiro de rede a habilidade de alterar o comportamento padrão de roteamento baseando-se em diferentes critérios ao invés de somente a rede de destino, incluindo o endereço de rede de origem, endereços TCP/UDP de origem e/ou destino, tamanho do pacote, pacotes classificados com fins de QoS, etc.

Mas por qual razão utilizaremos PBR ?

O PBR pode ser utilizado em diversos cenários, para os mais diversos fins. No exemplo abaixo a rede 192.168.1.0/24 acessa a rede 172.16.0.1 com uma rota default configurada para o Link A, imaginando que uma segunda demanda surge para que a rede de homologação 192.168.2.0/24 acesse assim a Internet pelo Link A mas já o acesso para rede 172.16.0.1, deva ocorrer preferivelmente pelo link B. Nesse caso o PBR entraria para corrigir essa questão (lembrando que na tabela de roteamento o acesso para rede 172.16.0.1 é apontado para o Link A, criaríamos uma exceção somente para a nova rede).

Segue exemplo da configuração:

#
acl number 2000
 rule 0 permit source 192.168.2.0 0.0.0.255
! ACL para match na rede 192.168.2.0
#
policy-based-route XYZ permit node 10
 if-match acl 2000
 apply next-hop 192.168.223.3
! PBR dando match na ACL 2000 e encaminhar o 
! tráfego para o next-hop do link B
#
#
interface GigabitEthernet0/0/3
 port link-mode route
 ip address 192.168.12.2 255.255.255.0
 ip policy-based-route XYZ
! Aplicando o PBR na interface Giga0/0/3
#

A implementação da PBR é bastante simples, ele é definido para ser configurado usando o processo policy-based routing que é muito similar a configuração de uma route-policy (route-map) . O tráfego a ser tratado pelo PBR será comparado (match) utilizando uma ACL e em seguida tem o novo destino ou parâmetros alterados usando um comando apply + atributo.

Se o pacote não corresponder à política de PBR ou se o encaminhamento baseado em PBR falhar, o dispositivo utilizará a tabela de roteamento para encaminhar os pacotes.

Outros parametros dentro do PBR

Entre os outros parametros do PBR está o output-interface, default-next-hop e o default-output-interface.

Output-interface: Esse comando permite atribuir a interface de saída do trafego ao invés do IP do next-hop.

Default-next-hop / default-output-interface:Se o processo de roteamento baseado na tabela de rotas falhar, o equipamento utilizará o default next hop ou default output interface definido no PBR para encaminhar os pacotes.

Ao utilizar qualquer combinação destes comandos dentro de um PBR os comandos são avaliados na seguinte ordem:

apply next-hop
apply output-interface
apply default-next-hop
apply default-output-interface

O PBR é uma ferramenta muito poderosa que pode ser usada para controlar os caminhos específicos de tráfego de rede, porém certifique-se de usar apenas PBR quando for necessário. Como muitas outras features oferecidas em qualquer tipo de roteador, elas são projetadas para um conjunto específico de circunstâncias, o mesmo e deve ser utilizado para esses fins para assim manter a eficiência.

Referências

http://blog.pluralsight.com/pbr-policy-based-routing

HP 5920 & 5900 Switch Series- Layer 3 – IP Routing – Configuration Guide